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Abstract

In cardiac myocytes (heart muscle cells), coupling of electric signal known as
the action potential to contraction of the heart depends crucially on calcium-
induced calcium release (CICR) in a microdomain known as the dyad. During
CICR, the peak number of free calcium ions (Ca®') present in the dyad is
small, typically estimated to be within range 1-100. Since the free Ca®"
ions mediate CICR, noise in Ca®" signaling due to the small number of free
calcium ions influences Excitation-Contraction (EC) coupling gain. Noise in
Ca?" signaling is only one noise type influencing cardiac myocytes, e.g., ion
channels playing a central role in action potential propagation are stochas-
tic machines, each of which gates more or less randomly, which produces
gating noise present in membrane currents. How various noise sources in-
fluence macroscopic properties of a myocyte, how noise is attenuated and
taken advantage of are largely open questions. In this thesis, the impact
of noise on CICR, EC coupling and, more generally, macroscopic proper-
ties of a cardiac myocyte is investigated at multiple levels of detail using
mathematical models. Complementarily to the investigation of the impact
of noise on CICR, computationally-efficient yet spatially-detailed models of
CICR are developed. The results of this thesis show that (1) gating noise due
to the high-activity mode of L-type calcium channels playing a major role
in CICR may induce early after-depolarizations associated with polymorphic
tachycardia, which is a frequent precursor to sudden cardiac death in heart
failure patients; (2) an increased level of voltage noise typically increases
action potential duration and it skews distribution of action potential dura-
tions toward long durations in cardiac myocytes; and that (3) while a small
number of Ca®" ions mediate CICR, Excitation-Contraction coupling is ro-
bust against this noise source, partly due to the shape of ryanodine receptor
protein structures present in the cardiac dyad.

Keywords: cardiac myocyte, calcium-induced calcium release, excitation-
contraction coupling, noise, mathematical modeling, early-afterdepolarization
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Chapter 1

Introduction

1.1 Motivation

Noise has many roles in cellular biology, including noise-induced amplification
of signals |76], generation of errors in DNA replication [54], and enhancement
of neuron spiking reliability [102]. Often linked to detrimental consequences
(e.g., mutations leading to various diseases), noise also has beneficial roles,
e.g., evolution is partly a result of noisy copying of DNA. While cellular pro-
cesses take place in a fluctuating environment, cells behave in a surprisingly
orderly way. How this order arises from noise, and how noise is attenuated
and taken advantage of in cellular processes are largely open questions [74].

Calcium (Ca®") is a ubiquitous second messenger in many cellular pro-
cesses [10]. In the cardiac myocytes (heart muscle cells), its role is cru-
cial as a part of the Excitation-Contraction (EC) coupling: Ca®" translates
electrical signal known as the action potential (AP) to a contraction of the
heart. Abnormalities of Ca?" dynamics in cardiac myocytes may have severe
consequences. For example, mutations in a gene encoding Ca®'-sensitive
Ca®"-release channels (known as ryanodine receptors, or RyRs) account for
two-thirds of an inherited heart disorder known as Catecholaminergic poly-
morphic ventricular tachycardia |51].

While large amount of data on cellular properties is available, it is com-
monly acknowledged that data alone is not sufficient to explain emergent
properties arising from complex interplay of biochemical networks [105].
Quantitative description of intracellular Ca** dynamics is best accomplished
by integrative modeling, that is, models that couple experimental data to
interaction networks and thereby to function of active biological entities.
Recent advances in mathematical (e.g., Astala and Piivérinta [6]), exper-
imental (e.g., Sharma et al. [80]) and computational (e.g., Bader, 2004)



methods, as well as the availability of large quantities of data |96] all drive
the advancement of computational cardiobiology, which has become an im-
portant tool in decoding particulars of the operation of the heart, as shown
by extensive literature documenting both the reconstructive and predictive
abilities of integrative models of excitable cells [105, 44].

The ultimate aim of computational cardiobiology is to describe the func-
tioning of an entire heart from the first principles. Incorporating integrative,
biophysically detailed single-cell models into a computational model of the
whole heart is still at an early stage of development, but it is essential to an
attempt to understand heart arrhythmias [64, 65]. This kind of computa-
tional approach to modeling whole organs starting from models of individual
cells is known as integrative whole-heart modeling, and it has only recently
become feasible [44].

From the viewpoint of mathematical modeling, a cardiac myocyte is a
stochastic high-dimensional dynamical system with strong feedback and a
significant noise component. In this thesis, mathematical methods are ap-
plied to model isolated cardiac myocytes, with particular emphasis on in-
tegrative models in which noise is present. The aim of this thesis is (1) to
investigate the role of noise on macroscopic properties of a cardiac myocyte;
(2) to study the role of noise on dyadic Ca*" dynamics; and (3) to exam-
ine Ca®" dynamics in cardiac myocytes at multiple levels of detail, which
together provide a multiscale view.

1.2 Organization of this thesis

This thesis is divided into two parts: (1) a review of the relevant biology
and the mathematical methods of myocyte modeling; and (2) four published
articles. Part (1) consists of a brief review of the relevant cardiobiology (chap-
ter 2), a review of electrophysiological models of excitable cells (chapter 3),
examination of Ca*"-induced Ca®" release in the dyad (chapter 4), investi-
gation of the role of noise on cardiac myocytes (section 5), and a discussion
of the results of the four original articles included in this thesis (section 6).
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Glossary

AP Action potential

APD Action potential duration

ATP Adenosine triphosphate

O-AR [-adrenergic receptor

Ca®" Calcium ion

CaM Calmodulin

CaMKII Calmodulin kinase TI

CICR Calcium-induced calcium release

EAD Early after-depolarization

EC coupling Excitation-Contraction coupling
JSR Junctional Sarcoplasmic Reticulum

K™ Potassium ion

LCC L-type calcium channel

Mg?t Magnesium ion

Na*t Sodium ion

NSR Network Sarcoplasmic Reticulum

PKA Protein kinase A

SERCA Sarco(endo)plasmic reticulum Ca-ATPase
SR Sarcoplasmic reticulum

RyR Cardiac isoform of ryanodine receptor
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Chapter 2

Background on cardiobiology

2.1 The heart

The heart is a four-chambered electromechanical device, whose task is to
pump blood. It consists of two pumps in series: the right atrium and ventricle
to propel blood through the lungs for exchange of oxygen and carbon dioxide
(the pulmonary circulation) and the left atrium and ventricle to propel blood
to all other tissues of the body (the systemic circulation).

Contractions of the heart are driven by an electrical impulse called the
action potential (AP) which conducts throughout the heart muscle through
the cardiac conduction system. On each heartbeat, electrical excitation orig-
inates in a specialized pacemaker region known as the sinoatrial node. The
activity spreads through the upper chambers of the heart (the atria), then
through the atrioventricular node and the His-Purkinje system to the lower
chambers of the heart (the ventricles), inducing contraction of each cham-
ber. Abnormalities, such as blocks and loops in conduction pathways, lead to
cardiac diseases [48|. In summary, an action potential traveling in the heart
muscle triggers contraction of individual myocytes and thereby contraction
of the heart.

2.2 Cardiac action potential and ion channels

Regulating the internal composition of myoplasm is a key process in main-
taining the chemistry of life, two of the most fundamental components of
which are concentration and intracellular/extracellular balance of biologi-
cally important ions, including sodium (Na™), potassium (K¥), and calcium
(Ca®"). Since the phospholipid membrane is almost totally impermeable to
ions, there is a need for ion channels to transport ions in and out of the cell

12
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Figure 2.1: A cartoon showing Ca®" cycling and the major ionic currents
present in a cardiac myocyte (channel terminology as in Greenstein et al.
[34]). Briefly, in response to membrane depolarization Ca®" enters the cell
through LCCs from T-tubules, which triggers further Ca®" release from the
Junctional Sarcoplasmic Reticulum (JSR). This leads to an increase in my-
oplasmic Ca®" concentration, to the binding of Ca®" ions to Tropinin-C, ac-
tivation of myofilaments, and to the consequent contraction of the myocyte.
After detaching from myofilaments, Ca®" ions are mostly either sequestered
to the Network Sarcoplasmic Reticulum (NSR) by the Sarco(endo)plasmic
reticulum Ca-ATPase (SERCA) or extruded by sodium calcium exchanger
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through the membrane. Propagation of cardiac action potential depends on
ion channels (Fig. 2.1), and it reflects activity of over 20 ion channel types
[68] out of the total of 400 known ion channel types [29].

At the cellular level, the AP is associated with cyclic changes in the
electrical potential difference across the cell membrane known as membrane
potential (Fig. 2.2). The membrane potential is changed by ions flowing
through ion channels. During resting conditions (diastole), cell membrane is
highly permeable to KT ions, but almost totally impermeable to Na™ ions.
Membrane potential of a myocyte is approximately —90 mV during diastole.

Electrical excitability of myocytes is mainly due to an imbalance of Na™
and KT between extracellular space and myoplasm. At the beginning of
an AP (phase 0), a small electrical signal (stimulus) triggers opening of Na™
channels which results in a large and very brief influx of Na™ ions and thereby
a rapid depolarization of the myocyte (phase 1 in Fig. 2.2). Membrane po-
tential first hits 0 mV, and then overshoots to about +40 mV. This results
opening of ion channels responsible for the transient outward current (mem-
brane current Iy ), which rapidly depolarizes the cell (notch after phase 1
in Fig. 2.2). This enables opening of Ca®' channels allowing influx of Ca*"
(Ica1) necessary for the initiation of contraction. After the "notch" in AP, in-
ward K* currents (I, and Ik;) slowly repolarize the cell during the plateau
phase (phase 2). After the plateau phase, rectifying K* currents (mainly
Ix1) and inactivation of I, rapidly repolarize the cell (phase 3) to diastolic
membrane potential (phase 4). Thus, the changes in membrane potential
lead to a sequence of events that result in the contraction of the heart muscle
and the consequent pumping of blood through the body.

The AP of ventricular myocytes is characterized by a long plateau phase
(Fig. 2.2), during which many events are triggered that initiate and con-
trol mechanical contraction. The long plateau is also necessary to keep the
myocyte from responding to a secondary excitation known as early after-
depolarization.

2.3 Excitation-Contraction coupling

Translation of electrical excitation (the AP) to contraction of the heart is
known as Excitation-Contraction (EC) coupling. Contraction of the cardiac
myocytes occurs only after individual L-type calcium channels (LCCs, see
Bers|[10]; /a1 flows through LCCs) open in response to membrane depolar-
ization producing Ca®' flux into a small microdomain known as the cardiac
dyad' [10|. The resulting influx of Ca*" ions leads to opening of RyRs located

!Term ’diad’ is also commonly used to refer to the same domain.
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Figure 2.2: Ventricular action potential (top) with numbers 0-4 referring
to the phase of the AP, simulated with the Greenstein-Winslow model [34].
Phase 2 is the plateau phase. The major ionic membrane currents (not in
scale) operating during an AP: Iy,, cardiac sodium current; Ik,, rapid com-
ponent of the delayed rectifier current; I, cardiac transient outward current
1; Ix1, inwardly rectified potassium current; Iy, ca, cardiac sodium calcium
exchanger; In,x, cardiac sodium potassium ATPase; and Ic,p., cardiac L-
type calcium current.
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Figure 2.3: CICR in the cardiac dyad: (A) In response to membrane depo-
larization, LCCs open and allow Ca*" to enter the cardiac dyad from the
T-tubule lumen. These Ca®* ions bind to RyRs and thereby trigger opening
of RyRs, which enables Ca®" release from the JSR. (B) EC coupling gain
(defined as the ratio of peak Ca®" flux through RyRs to peak Ca®" flux
through LCCs) measured in experimental studies of Wier et al. [103] and in
Song et al. [83] is a decreasing function of clamp voltage.

in the closely apposed Junctional Sarcoplasmic Reticulum (JSR) membrane
and to additional flux of Ca®" ions from the JSR into the dyad (Fig. 2.3A).
This process is known as calcium-induced calcium release (CICR) [10], and
it was first proposed by Endo [26] as a mechanism for EC coupling in skele-
tal muscle. These two sources (RyRs and LCCs) of Ca®*" flux produce the
intracellular Ca?* transient leading to binding of Ca®" ions to Troponin-C,
activation of myofilaments, and ultimately to the cardiac muscle contraction
(Fig. 2.1). Thus, Ca*" acts as a second messenger in EC coupling.

The cardiac dyad is a small space between the sarcolemma and Sarcoplas-
mic reticulum (SR; consists of JSR and NSR) in which CICR takes place.
The dyad is often approximated as a cylinder of height of 15 nm and radius
of 100-400 nm (Figures 2.1 and 2.3A; for more details see, e.g., Bers [10])
or as a box of similar magnitude. The dyad contains 20-100 RyRs and 5-20
LCCs, typically in ratio 1:5 of LCCs to RyRs [10].

Most (> 95%) of the Ca*" released to myoplasm is buffered by Ca*"
buffers[10]. While most of Ca*" buffering is by immobile Ca®* buffers, Ca®*
is also buffered by mobile Ca*" buffers (mainly ATP and CaM). Only a small
fraction of all Ca*" is free in myoplasm.

The majority of Ca’" entering the myoplasm during EC coupling is re-
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leased from the SR, only a fraction enters the cell through the LCCs [103].
The rate and magnitude of Ca®" release from the SR is tightly controlled by
the magnitude and duration of L-type Ca*" current.

The relative magnitude of Ca®* fluxes through LCCs and RyRs is mea-
sured by EC coupling gain defined as the ratio of peak Ca?' flux through
RyRs and peak Ca®' flux through LCCs (Fig. 2.3B). EC coupling gain is
measured experimentally in a voltage-clamp protocol typically with 10 mV,
100 ms steps from -40 mV to +50 mV from a holding potential of -100 mV.
While peak Ca®" fluxes through both LCCs and RyRs have bell shapes as
a function of voltage in this protocol, EC coupling gain typically has a de-
creasing shape (Fig. 2.3B) as a result of a shift between peak LCC and RyR
fluxes [10, 103|. The presence of this shift strongly suggests that EC coupling
gain depends on local dyadic Ca*" concentration [85].

The decreasing shape of EC coupling gain is a result of combination of
the driving force of Ca®** flux through LCCs and open probabilities of LCCs
at various voltages, which together determine the local dyadic Ca** trigger
driving the opening of RyRs. At a polarized (e.g., -40 mV) voltage, the
driving force of Ca*" influx is high (for details, see Sec. 3.1), however, only
relatively few L-type Ca®" channels open, which results high local Ca*" con-
centrations in a few cardiac dyads. Opening of RyRs depends on the dyadic
Ca?" concentration, and a high dyadic Ca*" concentration is converted to
a high opening probability of RyRs, which results high EC coupling gain.
At a higher, more depolarized voltage, driving force is low but many L-type
Ca*" channels open which results in low Ca*" concentrations in many dyads.
Thus, only a few RyRs open and the resulting EC coupling gain is low.

To make CICR a robust process, Ca®" release must stop at some point.
To ensure this, LCCs exhibit two separate inactivation processes: Ca®'-
dependent inactivation and voltage-inactivation. Similarly, RyRs exhibit
Ca*"-dependent inactivation, but also other mechanisms such as RyRs reg-
ulation by luminal Ca®', and allosteric interactions between neighboring
RyRs, which all assist in extinguishing Ca*" sparks (for more details, see
Bers [10]). The details of these mechanisms and their relative importance
are under vigorous investigation.

CICR provides a prime example of the presence of shot noise in a cellular
process. Even at peak, only 1-100 free Ca*" ions are present in the dyad [10],
which suggests that noise due to the discreteness of Ca®t ions may have a
significant influence on CICR. The influence of this noise source on EC cou-
pling has not previously been studied, but it is examined in article III. Since
CICR is central to EC coupling in the heart, understanding the molecular
basis of CICR is of fundamental importance to understanding cardiac muscle
function in both health and disease.
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Chapter 3

Mathematical models of excitable
cells

Cardiac myocytes belong to the class of excitable systems that includes, e.g.,
neural cells, magnetospheric substorms, and lasers. While excitable systems
operate in a wide variety of environments, excitable systems share a number
of general characteristics [55]. One of the main characteristics is the presence
of non-linear positive feedback, that is, a small signal may trigger a large re-
sponse. In a cardiac myocyte, this is evidenced by the rapid depolarization
in response to a stimulus. Following a stimulus, a cardiac myocyte has a re-
fractory period during which a second excitation is not possible. A refractory
period is also present in most excitable systems. To list one more character-
istic, an excitable system is also typically far from being at thermodynamic
equilibrium. For example, a myocyte is kept excitable in a non-equilibrium
state by K™ and Na™ electrochemical gradients between intracellular and
extracellular spaces maintained by ion pumps and exchangers [38|.

In electrophysiological cell modeling, the objects of interest are typically
the action potential, ionic and molecular concentrations, and fluxes asso-
ciated with them. Most computational cell models are based on a set of
ordinary differential equations, in which the number of equations is within
range one to a hundred. The first electrophysiological model of a heart cell
was the Van der Pol-oscillator [92]. While Van der Pol-oscillator is not really
a model of an excitable cell nor can it be considered a biophysically detailed
model due to the lack of ionic currents in the model, it has spawned a large
variety of models of excitable cells found in the scientific literature today, a
few of which are described in the following sections.

18
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Figure 3.1: Gating scheme of a single Hodgkin-Huxley gate |41]|. Transition
rates between open (O) and closed (C) states are given by « and g.

3.1 Hodgkin-Huxley model of the neural AP

The first biophysically detailed mathematical model of the neural AP was
formulated by Hodgkin and Huxley [41], who investigated giant squid axons.
In the Hodgkin-Huxley model, membrane potential V' is driven by three
membrane currents: potassium current [k, sodium current Iy,, and leak
current [1,. In more mathematical terms, voltage evolves according to

AV (t)/dt = —(Ina + Ix + 1) /Cr,  V(0) = Vi, (3.1)

where ¢t € R is time, V' : R — R is membrane potential, Vj is the initial
membrane potential, and C,, € R is (specific) membrane capacitance. The
minus sign in equation (3.1) is a convention stating that an inward current
has a negative sign and an outward current has a positive sign.

Membrane current [, where k € {Na® K" L}, was in Hodgkin-Huxley
model defined by

Li(t, V) = gi(V = Ei)lar(t, V)" [be (8, V)™, (3.2)

which depends on reversal potential £, € R (depending on intracellular and
extracellular ionic concentrations), membrane potential V', and the maximal
total membrane conductance g, € R of current k. Difference V' — Ej, is called
the driving force, and it largely determines the magnitude and direction of
ionic current k.

In the Hodgkin-Huxley model!, membrane currents depend on 2-state
gates that can be open or closed (Fig. 3.1). The ion channels conduct only
when the activating gates are open and the inactivating gates are closed.
In equation (3.2), the ratio of activating gates in open state is described by
gating variable a; : R* — [0,1] and the ratio of inactivating gates in closed
state is described by gating variable by : R?* — [0,1]. Constants my, ny € N

'During the 1950s when the Hodgkin-Huxley model [41] was formulated, there was no
knowledge of ion channels. Nevertheless, Hodgkin and Huxley made the bold hypothesis
that such machines exist, and proceeded to formulate a revolutionary model of the nerve
cells.
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defined the number of activating and inactivating gates associated with each
ion channel, respectively.

The rate at which ion channels open and close is different for each channel
type, and it is largely based on the potential difference (membrane potential)
across the membrane in which they are embedded. Of the three currents, I,
gated independently of voltage (thus, a; = by, = 1), while gating of Iy, and
Ix depended on membrane potential. Gating variables ay, b, : R? — R for
k € {Na™ K"} evolved according to

dak(t, V)/dt = Oék(V)(l — &k(t, V)) — Bk(V)ak(t, V), ak((), %) = (ka, (33)
dby,(t,V)/dt = i, (V)(1 = b (t, V) = B (V)bi(t, V), bi(0,V5) = bro, (3-4)

where rates oy, oy, Bk, 55, : R — R depend on voltage V, and initial values of
gating variables are given by ay o, bro € R. To complete the model definition,
rates o and [ must be found experimentally, e.g., rates

anat (V) = 0.1(V +25) /(125 _ 1), (3.5)
Brat (V) = 4eV/18 (3.6)

defined the transition rates of activating gates associated with Iy, in the
Hodgkin-Huxley model [41].

The Hodgkin-Huxley model employed the mean-field approximation, that
is, gating variables described the expected ratio of gates in one of the allowed
states. Use of mean-field approximation is reasonable, since an axon contains
125 Na™ [5] channels and 30 K* channels per ym? membrane area, which
yields 1,250,000 Na™ and 300,000 K* channels per axon (assuming mem-
brane area of 10*um?) [19]. The Hodgkin-Huxley model assumed that ionic
concentrations are unchanged during the simulation period, which restricts
the model to describe short-term behavior of an axon.

While the Hodgkin-Huxley model defined by equations (3.1)-(3.6) looks
deceptively simple, it nevertheless captures a significant amount of electro-
physiology of neural cells. These considerations together with experimental
advances brought a Nobel prize to Hodgkin and Huxley in 1963 for "their
discoveries concerning the ionic mechanisms involved in excitation and inhi-
bition in the peripheral and central portions of the nerve cell membrane".
More than 50 years after the discoveries of Hodgkin and Huxley, simple neu-
ral models still offer surprises, in particular when gating noise is incorporated
in such a model [102].
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3.2 Models of a cardiac myocyte

Similarly to axons considered by Hodgkin and Huxley [41|, cardiac myocytes
are excitable cells. Consequently, a model of the cardiac AP similar to the
Hodgkin and Huxley model [41] was subsequently derived by Beeler and
Reuter [8].

DiFrancesco and Noble [24] developed a more realistic electrophysiologi-
cal model of an isolated ventricular myocyte that in addition to ion channels
described similarly to those in the Hodgkin-Huxley model |41], also included
models for Na-K pump, Na-Ca exchanger, the SERCA pump, and dynami-
cally evolving ionic concentrations. The DiFrancesco and Noble model [24]
demonstrated that electrophysiological properties and processes of a cardiac
cells can be elucidated using a mathematical model, e.g., the model suc-
cessfully reproduced intracellular sodium concentration changes produced by
variations in extracellular sodium or by Na-K pump block. The DiFrancesco-
Noble model [24] has subsequently served as a basis for more recent integra-
tive models of a cardiac myocyte.

The most influential integrative models of ventricular myocytes today are
likely those of Luo and Rudy |56, 57, 58], Noble et al. |67|, and Winslow et al.
[106|, and their subsequent refinements. The phase II Luo-Rudy [57] model
provided a detailed multicompartment model of AP in guinea pig ventricular
myocytes, and it also described most of the membrane currents present in a
ventricular myocyte. The phase IT Luo-Rudy model [57] is still often taken
as a starting point of more refined modeling. While Luo and Rudy [57]
investigated Ca®' dynamics in a ventricular myocyte, their model did not
contain a detailed model of dyadic Ca®*" dynamics.

One of the most important issues in the electrophysiological modeling
of a cardiac myocyte is realistic description of CICR, which requires a de-
tailed model of Ca®" dynamics in the cardiac dyad. The canine AP model of
Winslow et al. [106] represented a left ventricular myocyte as a set of inter-
connected compartments with the cardiac dyad as one of the compartments.
A major improvement in the model of Winslow et al. [106] over the previous
myocyte models was a more realistic modeling of CICR, and a 'minimal’ re-
production of the heart failure phenotype in a cardiac myocyte. Subsequent
refinements of the Winslow et al. model [106] have improved CICR modeling
[34, 32].

Development of computational models of cardiac cells is an active area
of research, as is shown by the large number of models of cardiac myocytes
presented recently, e.g., [47, 91, 79, 20|. Nevertheless, most integrative models
of a cardiac myocyte are still based on the paradigm developed by Hodgkin
and Huxley and refined by DiFrancesco and Noble [24].
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3.2.1 A schematic model of a cardiac myocyte

To make things more concrete, the following equations define a schematic
electrophysiological single-compartment model of the AP in cardiac myocyte:

dV/dt ==> "> " I,/Ch = Iim/Cm, V(0) =V, (3.7)

q TESy
deg/dt = — Z I./2,Fv, ¢,(0) = cp0, where ¢ € {Nat,Ca*"},  (3.8)
reSy
des[dt = — Y L/Fv — Lyim/Fuv, ¢+ (0) = e (3.9)
TGSK+
]k(t, V) = ngk(V, Cqr5 ng)Pk,O(ta V), (310)

where k indexes the set M of membrane currents due to ion channels, ¢ €
{K",Na*,Ca®"}, S, is the set of membrane currents carrying ion species n €
{K*,Na™, Ca*"}, 2, is valence of ion species g, F is the Faraday constant, and
v is the volume of myoplasm. Extracellular ion concentrations cj are assumed
to be constant. Initial values of the variables are given by Vp, c,0 € R.

Equation (3.7) states that time-evolution of membrane potential V' de-
pends on all ionic membrane currents, including the stimulus current Iy
used to induce the AP in a myocyte?. Equation (3.8) defines the time-
evolution of ionic concentrations cy,+ and cg,2+, while equation (3.9) defines
the time-evolution of cix+ ion concentrations, since the stimulus current is
assigned to ck+, that is, to potassium concentration.

Membrane currents are defined by equation (3.10), where g, is the maxi-
mal conductance of current k. Function Dy : R® — R describes the driving
force of membrane current k, e.g., Dy(v,cq,-) = v — RT'In(c)/cq) /2, F was
chosen in the Hodgkin-Huxley model [41], where term RT'In(cj/c,)/2F is
the reversal potential of ion species ¢, R is the universal gas constant, and
T is the absolute temperature. More generally, membrane current due to
an exchanger or a cotransporter depends on intracellular ion concentrations
Cq1» Cq, and on extracellular ion concentrations cj , ¢y, of ion species ¢; and
q>. The actual membrane current then consists of two components, one for
each ion species. Hence, the driving force depends on concentrations of two
ion species. The two currents are treated separately in this formulation.

In modern integrative cell models, Hodgkin-Huxley type gating schemes
are often replaced by more detailed Markov processes.Assuming the kinetics
of an ion channel are described by a discrete-state, continuous-time Markov

2Stimulus current Igim is a time-dependent current, the exact shape and time-
dependence of which depends on the experimental protocol used.
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process, probability P, of state s € € of membrane current k£ evolves
according to equation

dPys(t,V)/dt =Y (o) (V) Peult, V) — ) (V) Peu(t, V), (3.11)
uF#£Ss
where P (0, Vy) = Py50 € R gives the initial value, €, is the set of states of
the Markov process describing ion channel kinetics associated with current
k. Transition rate in the Markov model from state u to state s are described
by aglf). For voltage-gated ion channels, rates a((l]z) depend on voltage V', but
for ligand-gated ion channels rates also depend on ligand concentrations.

Combining equations (3.7)-(3.9), and then integrating shows that the set
of equations describes a capacitor. This requires that all membrane currents
crossing the cell membrane influence membrane potential and must hence
be included in equation (3.7) and in one of the concentration equation®.
In the above-defined model, the stimulus current is assigned to myoplasmic
potassium concentration, cx+. Hence, set (3.7)-(3.11) of equations is overde-
termined and equations (3.8)-(3.11) suffice to define the model, since voltage
is a function of ionic concentrations.

The Poincare-Bendixson theorem (e.g., [89]) states that if an orbit of a
continuous two-dimensional dynamical system stays in a bounded region of
the state space, it either approaches a fixed point or possesses a limit cycle.
For a higher-dimensional dynamical systems, this is not necessarily true,
and chaos may be present [28]. In a model of the cardiac AP stimulated
periodically, a stimulation rate-dependent limit cycle typically exists given
physiologically-relevant parameters and initial conditions, even if relatively
small parameter changes may push the system to a bifurcation regime or
even to a chaotic regime.

The Winslow et al. model [106]| consisted of a set of 31 ordinary differ-
ential equations. While the model is stable (that is, the model has a limit
cycle) under regular conditions, a bifurcation point emerges when myoplas-
mic Na™ concentration increases significantly beyond 12 mmol /I, (the exact
value depends on various parameter settings), and the model shows cardiac
alternan-like behavior. This demonstrates that a high-dimensional dynami-
cal model does not necessarily have a well-defined limit cycle under realistic
physiological conditions. Given that a significant noise component is present
in experimentally measured membrane currents, interplay between stochas-
tic and deterministic "chaos-theoretic" components may be important near
bifurcation points, which is not captured by mean-field models such as the
Winslow et al. model [106].

3This has not been the case in all integrative models described in the literature. Hence,
not all integrative models have been charge-conservative. For details, see [93, 43, 35, 90].
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The main difference of a model based on equations (3.8)-(3.11) to the
Hodgkin-Huxley model (equations (3.1)-(3.6)) is that ionic concentrations
are dynamical (equations (3.8) and (3.9)), and that more general ion chan-
nel gating and conduction models are used. The schematic setting defined
by equations (3.8)-(3.11) can be found in most modern integrative myocyte
models.

3.3 Markov models of ion channel gating

Gating of ion channels is in central role in an electrophysiological cell model.
In a Hodgkin-Huxley type model, ion channel gating (equations (3.2)-(3.4))
consist of on-off switches, which can be interpreted as 2-state continuous-
time Markov processes. More specifically, a stochastic process X defined
on a complete filtered probability space (€2, P, {F;}, F) is a continuous-time,
finite-state Markov process if

PX(t+s)<alX(s)=z,X(u),0<u<s)=PX(t+s) <aX(s) =x),

(3.12)
for all t,s € R, s > 0, and its state space 2 is finite (above z € Q). Markov
processes are memoryless stochastic processes, and they provide a natural
framework? for generalizing Hodgkin-Huxley gating schemes (e.g., Winslow
et al. [106]). Unlike in more common applications of Markov processes, in
Markov process-based models (Markov models in the following) describing
ion channel gating, transition rates depend on membrane potential (as in
equations (3.5)-(3.6)), or on ligand concentrations.

Several Markov models can be combined to a single compound model (Fig.
3.2). Counterintuitively, a compound model may reduce the complexity of a
cell model, since it may enable the use of the steady state approximation for
ion concentrations separately for each state of the compound model of ion
channels (e.g., Hinch et al. [39]).

Ton channels are molecular machines that operate according to the laws
of statistical mechanics. Hence, to ensure that the second law of thermody-
namics is not violated, a Markov model describing ion channel gating should
be reversible, which corresponds to concepts of microscopic reversibility and
detailed balance in statistical physics. This ensures that no energetically-free
cycling is present in thermodynamic equilibrium.

Estimating parameters of a model is of fundamental importance in mod-
eling experimental measurements. A variety of methods have been employed

*In this thesis, gating kinetics schemes are based on continuous-time finite-state Markov
processes. While infinite-state Markov processes have been used to describe gating kinetics
(e.g., Hanggi et al. [31]), their impact on integrative models has been limited.
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Figure 3.2: Markov model of (A) RyR, in which state number 2 is the only
open state; and (B) LCC in which the top row is high-activity '"Mode Normal’
(non-Ca®*-inactivated state of the ion channel) and lower row is low-activity
"Mode Ca’ (Ca®*-inactivated state) [110, 106|. State number 6 is the open
state of the channel. Direct product of the RyR and LCC models yields (C)
a compound model consisting of two layers of which only '"Mode Normal’ is
shown.
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in the literature to fit parameters to Markov models of ion channels, includ-
ing the Ordinary least squares method (e.g., Iyer et al. [47]), Maximum
likelihood (e.g., Saftenku et al. [77]), Bayesian methods (e.g., Hodgson [42]),
and inverse methods (e.g., Cannon and D’Alessandro [15]).

The myocyte models presented in this thesis were mostly fitted using the
Ordinary least squares method, in which fitting is accomplished by mini-
mizing a sum-squared error function generated by comparing the forecasted
currents (obtained from equation (3.14)) to goal data typically obtained in
voltage-clamp protocols [47]. The two main methods to extract informa-
tion from a Markov model describing ion channel gating are (1) mean-field
approximation; and (2) stochastic single channel simulation.

3.3.1 Mean-field approximation

Vector-valued function P : R? — R™ describing the probability of each state
of a continuous-time Markov process (Markov model) at time ¢ evolves as

dP(t, Vi)

= AP V), (3.13)

where matrix-valued function A : R — R™*" describes membrane potential
(denoted here by V;) dependent transition rates of the Markov process. This
approach can be interpreted as a mean-field approximation, since given the
number of ion channels, denoted here by N, the average number of channels
in state k is N P,.

Under conditions of applied voltage clamp (that is, constant V}), differ-
ential equation (3.13) can be written as a linear time-invariant system. The
solution of this system is thus a weighted sum of exponentials (assuming that
eigenvectors {ex }y are linearly independent)

P(t) = Zwkeke’\’“t, (314)
k

where Ay € R is the kth eigenvalue of matrix A(V}), e € R™ is its correspond-
ing eigenvector, and weights w; € R are constants of integration determined
by the initial value vector P(0).

3.3.2 Stochastic simulation

Voltage-gated ion channels are devices operating in a stochastic manner |61]:
a large ensemble of ion channels gate in a rather orderly fashion, but indi-
vidual ion channels gate in a stochastic fashion. In a stochastic simulation,
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each channel can be described as a single entity, each of which is represented
as a Markov process.

One of the most efficient methods to simulate a continuous-time Markov
process is the exact method of Gillespie [30, 13| in which time-step to the
next state transition is given by 7 = log(r)/k, where r is a uniformly in (0, 1)
distributed random number and k is the sum of exit rates from the current
state of the Markov process. If multiple exit rates are available, the one
occurring is chosen according to the corresponding ratio of transition rate to
the total transition rate.

When the number of ion channels is large, it suffices for many purposes
to consider average properties of an ion channel ensemble using the mean
field approach (equation (3.13)). However, when the number of ion channels
is small, gating noise due to fluctuations in the number of open channels will
have a large impact on the results, and stochastic simulation is the only way
to proceed.

3.4 Modeling cardiac diseases computational zn
stlico

Proper functioning of ion channels is crucial to human physiology as is
demonstrated by, e.g., the recent finding that an inheritable mutation in
a gene encoding a single type of sodium channel is sufficient to completely
remove the sense of pain [22]. Hence it is not surprising that disorders of ion
channels make up a key group of heart diseases, because the heart beat is
so dependent on the proper movement of ions across the surface membranes
[59].

Linking molecular defects in ion channels to integrated function of an
organ is not an easy task. Experiments alone are not sufficient to provide
complete understanding of the heart and its disorders. However, coupling of
experimental results to computational models has enabled in silico examina-
tion of disorders in the heart |44|, which has brought significant elucidation
of the processes of the heart |63|. This was shown by, e.g., Winslow et al.
[106] who investigated quantitatively the impact of the expression level of the
gene encoding the SERCA pump on APD and Ca®" homeostasis in a car-
diac ventricular myocyte. Winslow et al. [106] also reconstructed the heart
failure phenotype of a cardiac myocyte based on experimentally observed ex-
pression levels of a gene encoding SERCA pump, sodium-calcium exchanger,
and changes in potassium and certain other ionic currents under heart failure
condition (Fig. 3.3). In these experiments, myocytes characterized as failing
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Figure 3.3: Comparison of experimental measurements on normal and failing
canine cardiac myocytes with the computational reproduction of experimen-
tal measurements using the model of Winslow et al. [106]: (A) Experimen-
tally measured AP in a normal (black line) and a failing myocyte (light grey
line); (B) Computationally reproduced AP in a normal (black line) and a
failing myocyte (light grey line); (C) Experimentally measured myoplasmic
Ca®" transients in a normal (black line) and a failing myocyte (light grey
line); (D) Computationally reproduced myoplasmic Ca*" transients in a nor-
mal (black line) and a failing myocyte (light grey line).
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were isolated from canine hearts subjected to the tachycardia pacing protocol
[71].

An arrhythmia is a disturbance of the cardiac rhythm, which may lead
to severe or even fatal complications [59, 64]. Over 40 drugs are available to
treat various heart conditions, with cardiac arrhythmia representing a signif-
icant segment of the drug market [68|. Understanding the electrophysiology
of the heart is also critical to resolving a major problem for the drug indus-
try: a large number of compounds target the proteins involved in cardiac
repolarization, so causing arrhythmia can be fatal [64]. Painkiller rofecoxib,
marketed as Vioxx, is a prime example of the issues: it was on the market
for five years before it was found to increase the risk of heart attacks and
strokes in long-term users |21|. This necessitates computational investigation
of, e.g., the possible cellular triggers of arrytmias |64, 105].

A clear understanding of how cellular and molecular processes regulate
Ca*" movements should help make it possible to design novel drugs that
act specifically at strategic locations in the heart. Biophysically detailed
models have significantly contributed to our understanding of processes in-
fluencing action potential shape and duration in normal myocytes[105]. As
a further development, electrophysiological models have also been applied to
investigation of genetic and molecular basis of arrhythmia. In more detail,
models have been applied to investigate EADs [113, 97|, mechanisms of de-
layed after-depolarizations |95, 94|, consequences of gene mutations [17|, and
altered gene expression at the cellular level [106]. The results of these studies
demonstrate that modeling can significant advance our understanding of the
heart in both health and disease, which is a prerequisite of the development
of more efficient and safe drugs.

In summary, cardiac myocytes have been extensively studied, and it has
been claimed that "if there is a virtual cell to be had, it is cardiac myocyte"
[105]. Nevertheless, significant gaps persist in our knowledge of the details of
the cardiac myocyte function. An example of such a gap is how Ca®" sparks
are extinguished, that is, how RyRs close at the end of a Ca®" release event
in the cardiac dyad [86].
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Chapter 4

Models of CICR in the cardiac
dyad

A recurrent theme in biology is the modeling of small microdomains control-
ling significantly larger processes. An example of this is CICR taking place
in the cardiac dyad, which controls the amount of free myoplasmic Ca®" in
a cardiac myocyte and thereby determines the strength of the heart contrac-
tion. Since EC coupling depends on CICR, detailed description of the dyadic
Ca?' dynamics is a central issue in computational cardiobiology.

4.1 Integrative models and the cardiac dyad

An integrative computational model of a myocyte enables investigation of
the interrelationship between microscopic and macroscopic cellular processes
that would not be possible in experiments. To enable realistic in silico experi-
ments, an integrative model of a cardiac myocyte must describe physiological
processes relevant for the investigation. For example, to investigate the con-
nection of macroscopic EC coupling to the underlying microscopic events,
CICR occurring in the cardiac dyad must be modeled in detail.

A number of integrative models of the cardiac myocyte have been pro-
posed in the literature, e.g., |24, 57, 67, 106]. The first integrative models
explicitly containing the cardiac dyad were the canine AP model of Winslow
et al. [106] and the guinea pig AP model of Noble et al. [67]. In the model of
Winslow et al. [106], a cardiac myocyte was divided into four compartments:
myoplasm, NSR, JSR, and the cardiac dyad. Ca®" release from the RyRs de-
pended on dyadic Ca*" concentration, that is, CICR took place in the cardiac
dyad. While the Winslow et al. model [106] reproduced a large amount of
experimental data, it assumed that all RyRs in the myocyte observe identical
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dyadic Ca*" concentration, and that both the trigger Ca®" and the released
Ca?" pass through a common pool during CICR. This approach is known as
the common pool approach [85]. Similarly, Ca®* passed through a common
pool during CICR in the model of Noble et al. [67], which is also a common
pool model'.

It has been known for over 35 years that contraction amplitude of a car-
diac myocyte is a smoothly graded function of membrane potential during
voltage clamp depolarization [62, 85]. In a common pool model, Ca** re-
lease is always triggered when Ca®" concentration in the common dyadic
pool crosses a threshold. Hence, in a common pool model, Ca*" release is
necessarily of all-or-none type, and not a graded function of voltage-clamp
potential, as found in experimental studies [103, 62]. Stern [85| showed that a
common pool model cannot produce both high EC coupling gain and graded
Ca?*" release, if magnitudes of Ca*" fluxes are physically relevant. Since
physiological role of CICR is to provide high amplification of trigger Ca**,
inability to reproduce both the high gain and graded release is a significant
issue for an integrative model.

Stern [85] introduced models based on the local control hypothesis, in
which gating of RyRs and LCCs depend on local Ca®' concentration in the
cardiac dyad, not on Ca®" concentration in any pool common to all LCCs
and RyRs. Stern [85] showed that these local control models are consistent
with the experimental data. In a local control model, the choice of LCC
and RyR openings is made essentially independently in each dyad, and the
dyads couple only weakly via myoplasmic Ca®" concentration. When an LCC
opens, its opening determines local dyadic Ca®" concentration, and thereby
state of the LCC influences states of all RyRs close-by. Hence, the state of a
RyR is statistically correlated with that of LCCs located in the same dyad.
Because of this, bulk SR Ca®" release is not a unique function of macroscopic
Icar., even when microscopic Ic,y, is the sole mediator of SR Ca’®" release
[85], but it depends on both open probability of LCCs as well as on unitary
LCC current (not only on their product, that is, on macroscopic Icar,).

This interplay between the LCC and RyR states together with driving
force at different membrane potentials results a shift between peak fluxes
through RyRs and LCCs [85, 34|. The shift between peak fluxes through
RyRs and LCCs has also been observed experimentally [103], and it emerges
naturally in a local control model, but not in a common pool model.

Given the issues with common pool models, it is of importance that an

!The guinea pig ventricular myocyte model of Luo and Rudy [57] assumed that the
whole-cell SR Ca?" release depends directly on the whole-cell L-type calcium current. The
cardiac dyad was not included as a compartment in the Luo-Rudy model [57], and their
approach is best described as the hybrid approach.
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integrative myocyte model describes EC coupling based on a local control
model of CICR. To improve on the common pool model of Winslow et al.
[106], Greenstein and Winslow [34] formulated a stochastic, integrative model
of a cardiac myocyte based on the local control hypothesis [85] (and on Rice et
al. [75]). In the Greenstein and Winslow model [34], a subset of 12,500 dyads
of 20 RyRs and 4 LCCs each were simulated and the resulting Ca*" fluxes
were scaled to correspond to the physiological 12,500 dyad case. In the local
control model of Greenstein and Winslow [34], gating of RyRs depended on
local Ca®" concentration in the dyadic cleft (each cardiac dyad in this model
was divided into four interconnected dyadic clefts) in which the RyR was
located. The model reproduced the graded release of Ca*" from the SR,
the experimentally observed shape of the EC coupling gain [103|, and the
shift between peak Ca*" fluxes through LCCs and RyRs. Thus, Greenstein
and Winslow [34] showed that an integrative model based on the local control
hypothesis of Stern [85] provides a more detailed picture of EC coupling than
a common pool model.

The rapid equilibrium approximation [39, 32| provides a computationally
efficient simplification of the computationally heavy approach of Greenstein
and Winslow [34|. The main innovation of Hinch et al. [39] was the use
of the rapid equilibrium approximation of Ca®" concentration in the dyad
separately for each state of the compound Markov model of RyR and LCC
kinetics. In their model, Ca®" concentration was a function of Ca®" fluxes
but not time (unlike in Greenstein and Winslow [34]). This removed the de-
pendence of transition rates of the Markov models describing RyR and LCC
gating on dynamical dyadic Ca®" concentration and thereby enabled the cal-
culation of Ca?" dependent transition rates without explicit simulation of
Ca*" concentrations. This enabled a significant improvement in simulation
speed. A slight discrepancy in membrane potential is induced by this ap-
proximation, however, the difference is negligible [90]. Greenstein et al. [32]
demonstrated that a model of CICR based on the rapid equilibrium approx-
imation can be integrated into an integrative model of AP in canine cardiac
myocytes.

4.2 Spatial models of the cardiac dyad

CICR depends on free Ca®" concentration in a strictly constrained space,
the cardiac dyad. Since Ca?" diffusion depends on geometry of the cardiac
dyad, the geometry of the dyad may have a significant influence on CICR.
None of the integrative models described so far has investigated spatial Ca*"
concentration differences in the dyad, nor did they examine the impact of
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the spatial extension of protein structures in the dyad on EC coupling gain.

Soeller and Cannell [82] investigated Ca®t dynamics in an empty, cylindri-
cal dyad by solving the electrodiffusion equation for the Ca®*" concentration
profile. To partially account for molecular structures present in the cardiac
dyad, Soeller and Cannell [82, 14] scaled the diffusion coefficient down. Their
results showed that electrostatic potential due to phospholipid headgroups
on the sarcolemma reduces concentration of free Ca®* ions in the dyad by a
factor of approximately 10. Their subsequent work extended the analysis to
RyR opening [14], however, neither model is as such suitable for integrative
studies.

Langer and Peskoff |52] examined Ca*" diffusion in the cardiac dyad, es-
sentially in a similar way as Soeller and Cannell [82|. In a following study
[73|, they embedded the model in a larger context of sarcomere. Langer
and Peskoff [52, 73] investigated the cardiac dyad, in which box-shaped RyR
structures were placed, using numerical methods to solve the diffusion equa-
tion in the dyad. Like the model of Soeller and Cannell [82], models of Langer
and Peskoff |52, 73| are not suitable for integrative studies.

The general predictions of Langer and Peskoff |52, 73] and of Soeller and
Cannell [82, 14] are that Ca®" influx via an LCC increases dyadic Ca®" to tens
pumol /T concentration very rapidly following opening of the LCC; and that
Ca?" release from RyRs is a very sensitive function of the spatial clustering
of RyRs, and position of RyRs relative to the LCC.

Hinch et al. [40] solved analytically the equilibrium Ca*" concentration
profile in an empty cylindrical dyad in the presence of electrostatic potential.
They essentially rederived the steady state results of Soeller and Cannell [82]
analytically instead of numerical simulations used in [82]. While Hinch et al.
|40| showed that analytical methods can be used to investigate Ca*" concen-
tration profile in the dyad, they did not proceed to include protein structures
in the dyad or examine macroscopic properties of a cardiac myocyte.

Stern et al. [87] examined the mechanisms of CICR. in detail in a model
of Ca?* dynamics in the dyad without protein structures, employing both
the rapid equilibrium approximation and numerical simulations. Stern et al.
[87] found that one activating Ca*" binding site per RyR is not sufficient for
stable CICR, and that either strong Ca®" inactivation of RyRs or allosteric
interaction of neighboring RyRs is required for a stable CICR.

Contrary to the typical assumption of modeling that the dyad is an empty
space, a large portion of the dyadic volume is occupied by large proteins,
mostly by RyRs [10]. All above articles examined an empty dyad or described
the protein structures as simplistic structures. Since electrostatic potential
due to lipid head-groups on the sarcolemma reduces the already low number
of free Ca*" ions in the dyad, noise in the Ca*" signal in CICR may be
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significant. How these issues influence each other, and what is their combined
influence on CICR has only recently been probed in the literature.

4.3 The small number of Ca*" ions in the dyad

Recently, it has been recognized that models tracking individual ions and
molecules in biochemical networks are necessary due to the small number
of signaling molecules [4, 88, 11|. Results of Bhalla |11] suggested that the
traditional mass-action law ceases to be computationally reliable for volumes
below 1071 liter (that is, a femtoliter). Bers [10] estimated that in CICR only
relatively few free Ca®" ions (that act as second messengers in EC coupling)
are present in the cardiac dyad at any time, even at peak density. This
suggests that a high noise level may be associated with CICR. None of the
models briefly described in Sections 4.1 and 4.2 took into account the small
number of free Ca®" jons mediating CICR in the dyad.

Koh et al. [49] formulated an MCell [88] based model of Ca®" dynamics
in an empty cardiac dyad. In their model, each Ca*" ion was simulated
individually. Koh et al. [49] found that peak Ca®" concentration is almost
independent of the dyad radius, however, height of the dyad had a major
impact on the peak Ca®" concentration. The results of Koh et al. [49]
suggested that free Ca®" ion concentration in the dyad is significantly higher
than assumed in the previous studies. This is partly due to the fact that
a single Ca®' ion corresponds to concentration of 13 umol/L in the dyad
with radius 100 nm, and partly due to the fact that Koh et al. [49]| did not
consider electrostatic potential due to phospholipid head groups that reduces
the number of free Ca?' ions in the cardiac dyad.

In the MCell-based model of Koh et al. [49], Ca*" ions move according
to Brownian motion (random walk) in the dyad in the absence of molecular
structures and electrostatic potentials. As shown by Soeller and Cannell[82],
electrostatic potential significantly affects free Ca*™ concentration in the car-
diac dyad. Hence, the method of Koh et al.[49] does not describe Ca*" dy-
namics in the dyad sufficiently accurately to enable understanding of the
impact of noise in Ca*" signaling on EC coupling.

4.4 Spatially- and molecularly-realistic models
of the dyad

To fully address the impact of the small number of Ca*" ions responsible
for triggering CICR, a model must incorporate geometry of proteins in the
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cardiac dyad, electrostatic potential due to headgroups on the sarcolemma,
and individually tracked Ca®' ions. Article III investigated CICR and EC
coupling gain by formulating a spatially realistic model of the dyadic Ca*"
dynamics in which individually simulated Ca®" ions move under the influence
of electrostatic potential. Despite the fact that recent advances in cryoelec-
tromicroscopy have brought ever more detailed picture of RyR (e.g., Sharma
et al. |80]), no previous computational model has examined the impact of
realistic RyR protein structures on CICR. The model of article III is briefly
reviewed in the following.

In article TI1, the cardiac dyad was approximated as a box of dimen-
sions 200 x 200 x 15 nm. Boundaries representing sarcolemma and the SR
membrane were assumed to be reflecting in the sense that Ca®" ions cannot
cross these membranes. The dyad-myoplasm interface (Figures 2.1 and 2.3)
was approximated as an absorbing membrane, that is, any Ca*" ion hitting
this boundary was removed from the simulation. To incorporate realistic
molecular structures, RyR structures were modeled based on cryoelectromi-
croscopy data |81], while both LCC structures [100] and CaM structures [50]
were modeled based on crystal structure data. These protein structures were
discretized and incorporated in the model as lattice points not admissible
for Ca*" ions to diffuse in. LCC-structures were placed on the sarcolemma,
CaMs tethered to LCCs, and RyRs resided as quasicrystal arrays (Fig. 1 in
article I1T) apposed to LCCs.

To investigate the movement of discrete Ca®" ions, the local equilibrium
approximation of Wang et al. [99] (reviewed in Appendix A) was used in ar-
ticle IT1. In this approach, continuous movement of a Ca*" ion in the presence
of realistic molecular structures and a potential due to phospholipid head-
groups was discretized to a movement on a lattice (with 1 nm lattice spac-
ing), which can be approximated as a continuous-time discrete-state Markov
process. Kinetic models describing LCC and RyR gating were based on pre-
vious, experimentally-verified models in the literature: the four-state kinetic
model of RyR gating was based on Stern et al. [87|, and the 11-state ki-
netic model of LCC gating was based on Winslow et al. [106]. To account
for ion channel activation (RyRs) and inactivation (RyRs and LCCs) due to
binding of Ca®" ions, transition rates of kinetic models describing the ion
channels were modified to depend on binding status of the corresponding
Ca*" binding sites. When a suitable number of Ca®' binding sites of an
LCC or RyR were occupied, Ca*"-dependent state transitions of the corre-
sponding ion channel were enabled. Finally, movement of Ca®*" ions in the
dyad and gating of ion channels were in this model combined into a single
high-dimensional continuous-time discrete-state Markov process, which was
in article IIT simulated stochastically.
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Novel features of the model described in article IIT included simulation of
the dynamics of individual Ca®" ions and ion channels in a realistic spatial
setting in the presence of realistic noise sources: gating noise, and signaling
noise due to Ca*" ion movement and binding reactions. The model also
enabled investigation of macroscopic properties of a myocyte depending on
CICR, such as EC coupling gain, starting from microscopic variables.

The results of article ITT suggest that RyR structures "funnel" Ca®" ions
toward binding sites on RyRs. Funneling occurs because the presence of
large RyR structures increases the probability that a Ca®' ion binds to an
activating binding site, which increases the probability that the RyR opens.
As shown in article III, the shape of RyR protein structures increases EC
coupling gain significantly. Another finding of article I1I was that the pres-
ence of electric potential due to lipid head-groups reduces EC coupling gain,
partially due to associated increased noise level in Ca*" signaling (see Sec.
5.2 for further discussion). It was also found that the relative placement
of protein structures in the dyad is functionally very important: the exact
placement of LCCs apposed to RyRs influences CICR in the dyad. In par-
ticular, the position of binding sites on the RyR protein structures relative
to the source of Ca®' influx significantly modulates EC coupling gain (Fig.
7 in article III).

4.5 Integrative, spatially-realistic models of the
dyad

Spatially-detailed models of the cardiac dyad are rarely suitable for inclusion
in an integrative model of a cardiac myocyte. This, however, is of crucial
importance to the development of spatially-realistic, integrative models of
the heart [107]. To develop a spatially-detailed integrative model of CICR in
the cardiac dyad, a model was formulated in article IV based on the rapid
equilibrium approximation of Ca®" concentration profiles in the cardiac dyad
and on biophysically detailed Markov models of ion channel kinetics.

A characteristic time a Ca®" ion spends in the dyad is a few microseconds,
while each state of an ion channel typically lasts for hundreds or thousands
of microseconds. Hence, Ca®" diffusion is several orders of magnitude faster
than ion channel gating in the dyad. This suggests that the rapid equilibrium
approximation of Ca?" probability density provides a good approximation to
a more detailed model simulating individual Ca*" ions, when a large num-
ber of Ca?" ions are present in the dyad. While this is not necessarily the
case in Ca®" trigger, rapid equilibrium approximation may nevertheless work
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sufficiently well in the dyad.
In article IV, a starting point for modeling Ca®" concentration profile was
the rapid equilibrium approximation of a Fokker-Planck equation

% = DAP(t,z) + ; a% {P(t, x)agg)}, P(ty,z) = F(z), (4.1)

describing the probability P : R®*! — R of finding n Ca®" ions at positions
r € R at time ¢t € R. In equation (4.1), A = Zi’;l 0?/0x% is the Laplacian
defined on twice diffentiable functions, and D € R* is the Ca?" diffusion
coefficient. Function U : R* — R describes both the potential inside the
dyad due to negatively-charged phospholipid headgroups on the sarcolemma
[82, 52] and interactions of Ca*" ions. Distribution F : R* — R describes
the initial positions of Ca*" ions.

Assuming potential U does not include Ca*™ — Ca?" interactions, equa-
tion (4.1) reduces in equilibrium to a linear second-order partial differential
equation

(Lp)(y) =0, (4.2)
where L is an operator defined by (Lu)(y) = DAu(y) + > _, 8;; [u(y)agjj)}

on C%(R? R). Probability P of all Ca®" ions is in this formulation replaced
with probability density p of a single Ca*" ion. Probability density p can be
interpreted as a "concentration", however, it describes the expected density
of Ca®" ions rather than the actual number of Ca®" ions present in a volume.

A model of CICR must describe the entry of Ca*" ions into the dyad.
Since equation (4.2) does not account for the entry of Ca®" ions, a source
term must be included. Assuming that probability mass enters the dyad
continuously, a source term is given by, e.g., Jo(y — z), where J € R is
magnitude of the influx, zj is the position of Ca*" source k, and ¢ is the
Dirac é-distribution. Under these assumptions, Ca*" concentration profile is
obtained by solving equation

(Lp)(y) = Y Jd(y — 21), (4.3)

where y € R®, and J;, is the magnitude of Ca®" flux through source or sink
k. In the absence of potential U, equation (4.3) reduces to a Poisson equa-
tion. To investigate Ca®" concentration in the cardiac dyad, equation (4.3)
is solved in a cylindrical space (with appropriate boundary conditions) repre-
senting the dyad. In article IV, it was assumed that the boundaries represent-
ing sarcolemma and the SR membrane were reflecting, while boundary on the
dyad-myoplasm interface was absorbing. Realistic shapes of the boundaries
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are rather complex due to the shape of the proteins, mainly RyRs, which
requires that equation (4.3) must in practice be solved numerically.

In the CICR models of article IV, an ion channel consisted of two parts:
a kinetic model describing kinetics of ion channel states; and a model of acti-
vating and inactivating Ca®" binding sites. The kinetic model was described
as a compound RyR-LCC Markov model, state of which determined Ca®"
fluxes through the ion channels. Transition rates of the kinetic model were
determined by the states of the associated binding sites, which depended
on Ca*" concentration p near each Ca®" binding site. Hence, if equilibrium
Ca?' concentrations at the binding sites are known, all transition rates in a
compound RyR-LCC Markov model can be calculated independently of time,
which enables a computationally-efficient, integrative description of CICR.
To make the model computationally efficient, Ca?" concentration profiles
must be calculated efficiently. Since equation (4.3) is linear, steady state
Ca?* concentration profile for any flux configuration can be computed based
on a few elementary concentration profiles, which can be precomputed before
the actual simulation.

The above considerations provide a method to develop a spatially-realistic,
computationally-efficient model of CICR in the cardiac dyad based on the
local control hypothesis. In article IV, a model suitable for inclusion in an
integrative model of a cardiac myocytes was developed. It was based on
the above method in the case U = 0. Article IV showed that such a model
reproduces the physiologically important properties of EC coupling, in par-
ticular the graded release of Ca®" from the SR and the decreasing shape of
EC coupling gain. The main physiological findings of article IV were that
the geometry of RyR protein structures have a major impact on CICR by
increasing EC coupling gain, and that the shape of the RyR protein enables

LCC. These findings agree with the results of article III.

The method described above is general in the sense that it enables the use
of equilibrium Ca*" concentration profiles from any model of the dyadic Ca**
dynamics, e.g. Soeller and Cannell [82|, in an integrative model of CICR. The
CICR models derived in article IV show that it is feasible to incorporate re-
alistic protein structures, binding of Ca®" ions to activating and inactivating
binding sites, electrostatic potentials, and concentration profiles into a com-
putationally efficient integrative model of a cardiac myocyte. In this sense,
the method enables the completion of the development program of myocyte
models outlined in Winslow et al. [107] stating that a model of CICR with
the above properties should be developed. In addition to modeling CICR,
the method is suitable for other situations, such as describing potassium and
calcium dynamics in BK,-CaV nanodomains in neural cells|[9].
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Chapter 5

Noise and the macroscopic
properties of a cardiac myocyte

Noise can be defined as random variations of one or more measurable char-
acteristics of any entity, such as voltage, or current. In cellular processes,
noise is present due to many reasons, e.g., thermal noise is a manifestation of
random movement of molecules, and shot noise (e.g., gating noise) is a result
of stochastically occurring discrete events.

Noise is often thought to only "blur" the evolution of a dynamical system,
but not influence average properties of the system. This indeed is the case
in a linear system |3, 55|, however, this may not be true in a non-linear sys-
tem: the presence of noise in a dynamical non-linear system may influence
average properties and induce transitions absent in a deterministic model
[55, 78]. For example, Samoilov et al. [78] show that in a futile enzymatic
cycle (a biochemical reaction in which a substrate is converted to product by
a forward enzyme and then can be converted back to substrate by a reverse
enzyme), noise may induce bistability which is absent in a corresponding de-
terministic model. In some cases, evolution has even enabled certain cellular
processes to take advantage of noise by utilizing stochastic resonance [76].

Small number of signaling molecules may induce a significant noise level to
a cellular process dependent on this signaling [11]|. Effects of this signaling
noise are particularly likely to be found in subcellular signaling pathways,
in which a relatively small number of constituent molecules interact non-
linearly. This is the case in many second messenger systems, such as CICR.
Since this kind of signaling pathways often play a crucial role in cellular pro-
cesses, it is of significant interest to investigate how signaling noise influences
the cellular processes, in particular, the physiology at the macroscopic level.

The impact of noise on a non-linear dynamical system is an important
area of research, since many physiological systems evolve in the presence of
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noisy drivers. The following sections investigate the impacts that noise may
have on a cardiac myocyte.

5.1 Distribution of APDs

APD measuring the duration of an AP is an important determinant of the
presence of life-threatening EADs. In any recording of membrane potential
of a cardiac myocyte, noise is present in the measured voltage [38]. This
noise is known as voltage noise and it is mainly due to gating noise of ion
channels [112]. Beat-to-beat variation of APD is likely noise-induced [112].
There are two main approaches to explore the impact of noise on APD: (1)
use of a stochastic ionic model (e.g., Wilders and Jongsma [104]); and (2)
application of stochastic differential equations (e.g., Clay and DeHaan [18]).

Wilders and Jongsma [104]| examined the impact of stochasticity on a
sinoatrial node cell. Their main result was that variation in interbeat-interval
in the sinoatrial node cells is consistent with the stochastic open-close kinetics
of membrane ion channels.

Clay and DeHaan [18] applied stochastic differential equations to de-
scribe the distribution of interbeat-intervals in embryonic chick ventricular
myocytes, and showed that the distribution of interbeat-intervals in chick
heart-cell clusters is well described by a diffusion process with a constant
drift and a constant diffusion coefficient representing the noise level.

Of these two approaches, an ionic model is preferable, because it enables a
more biophysically detailed description of gating noise. However, stochastic
differential equations enable analytical characterization of the response of
APD to varying noise levels, which is not possible using an ionic model.

The typical influence of voltage noise on APD was investigated in article
IT, where it was shown that a higher noise level increases average APD in
two different models of the AP in cardiac myocyte. Similar increases were
observed both in the ionic model of Greenstein and Winslow [34|, and in
a model based on a diffusion process (article IT). This is explained in more
detail in the following sections.

5.1.1 The deterministic case

First, let us analyze the impact of a single fluctuation on average APD.
Assuming a myocyte is initially at voltage = at the start of the plateau phase
of an AP, and that the current-voltage relationship is described by function
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I : R — R mapping voltage to membrane current, APD is given by

rC,,dz
Tx:/a m, (5.1)

where a is the target voltage corresponding to a voltage where APD is calcu-
lated, and C), is specific membrane capacitance. Then, the average response
of APD, denoted here by AT,, to a symmetric voltage fluctuation x + ¢ in
the initial voltage is given by

1 L/ [* Cpdz  ["Cpdz
1 R CUm @2 _m= 2
AT, 5 (Tg;-i-e + 71, 6) T 2 (/xs I(Z) + /x I(Z) ) (5 )

If the I(V') function is positive and increasing (which corresponds to repo-
larization of voltage at a rate that is decreasing with time, since voltage
decreases with time), the second integral in equation (5.2) dominates over
the first one, that is, AT, < 0. Under these conditions, APD is on aver-
age reduced in response to the symmetric fluctuation in the initial voltage.
Similarly, if the (V') function is positive and decreasing (which corresponds
to repolarization of voltage at a rate that is increasing with time), the first
integral dominates over the second one, that is, AT, > 0, and on average
APD is increased in response to the symmetric fluctuation x +¢ in the initial
voltage. Hence, the sign of I” influences the noise response of APD asymmet-
rically, even when the fluctuation in the initial voltage is symmetric. This
suggests that noise may have a non-trivial impact on APD in the presence
of a non-linear current-voltage relationship.

5.1.2 The general case

Stochastic differential equations enable investigation of noise response of
APD in a more general setting than the method described above. In par-
ticular, the impact of noise on APD can be approximated by representing
membrane potential V; as a stochastic process

AV, = —I1(V))dt/Cp + o(Vi, )dBy, Vi = vy, (5.3)

defined in complete filtered probability space (Q,P,{F;},F) [69], and con-
sidering the stopping time 7 = min{¢ : V; < a}. Above ¢ : R — R is
the diffusion coefficient, and B is the standard Brownian motion [69]. When
voltage a is chosen appropriately, stopping time 7 represents APD. Functions
I and o can then be estimated from experimental measurements or, in their
absence, from simulations in a biophysically detailed model.
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The method of Alvarez 3| can be employed to investigate the properties
of the Laplace transformation of stopping time 7 and thereby the general
properties of APD. Tt can be shown that the Laplace transform E, [e”"7]
of stopping time 7 (that is, APD) can be represented as p(y)/p(z) (see
Borodin and Salminen [12]; Tto and McKean [46]), where ¢ is the fundamental
decreasing solution of equation

50220 (2) — 1(2)9'(2)/Co — rgl2) = 0. (5.4

Hence, to investigate the Laplace transform of APD, it suffices to examine
©. A change in noise level (that is, o) influences ¢ in a specific way deter-
mined mainly by the sign of I’ (article II). Since the Laplace transform of 7
determines all moments of APD, the fundamental decreasing solution ¢ can
be used to investigate the response of APD to a change in noise level.

The results of article I suggest that an increased level of voltage noise
will on average increase APD and skew the distribution of APDs toward
long intervals in ventricular myocytes, since the I(V') function is typically
decreasing as a function of voltage during the plateau phase of an AP. This
result is general in the sense that it holds for almost any decreasing I(V)
function. In addition, it is likely that the result can be generalized to any
noise process with a symmetric distribution.

In article 11, it was shown that APD distribution of the model of Green-
stein and Winslow [34] can to a high degree be reproduced by a diffusion
process. In both models, an increase in noise level led to increases in both
average and skewness of APD distribution, but to a decrease in mode of APD
distribution (Fig. 3 in article IT). The increase in skewness due to an increase
in voltage noise level is consistent with the observation of EADs in response
to a higher gating noise level in article 1.

5.2 Noise due to the small number of Ca’" ions
in the cardiac dyad

During CICR, only 1-100 free Ca*" ions are present in the dyad at any given
time, even at the peak density when RyRs are open (see Bers[10], and Fig. 8
in article ITI). A significantly smaller number of Ca®' ions are present during
the initial phase of CICR, when Ca®" ions entering through LCCs induce
opening of RyRs. Nevertheless, CICR and EC coupling are robust processes,
as is manifested in the fact that the heart operates continuously for 80 years
or more pumping 5-25 liters of blood each minute. Detailed investigation of
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these issues was the topic of article I1I, where the impact of realistic protein
structures on EC coupling gain was also examined.

At 0 mV, approximately 300 Ca®" ions enter the dyad through an open
LCC each millisecond. The typical open time of an LCC is 0.5 ms, and hence
the typical number of Ca®" ions entering the dyad is 150 per LCC opening at
0 mV. The number of free Ca®" ions is significantly reduced by electrostatic
potential due to phospholipid headgroups on sarcolemma, which may leave
only a few free Ca®" ions to trigger RyR opening. These Ca®" ions leave the
dyad so rapidly that on average less than one free Ca®" ion is assumed to be
present in the dyad [10|. Since an opening of a RyR requires simultaneous
binding of 2-4 Ca®" ions, it seems that CICR. cannot be a robust process.

Unlike the above simplistic computation suggests, CICR is a robust pro-
cess, as shown by the results of article TTT suggesting that 20-50 free Ca*"
ions suffice to mediate CICR. An important factors in this are the large num-
ber of dyads in a cardiac myocyte, relative locations of the small height of
the dyad, and the RyR protein structures that "funnel" Ca®" ions to binding
sites and thereby suppress the noise inherent in Ca?" signaling. The presence
of electrostatic potential due to phospholipid headgroups on sarcolemma re-
duces EC coupling gain and increases noise level in Ca®" signals associated
with the CICR.

During an LCC opening the number of free Ca®* ions in the dyad fluctu-
ates wildly (Fig. 8 in article IIT). Due to these fluctuations and the fact that a
single Ca*" ion represents Ca®t concentration of 13 gmol/L (in a cylindrical
dyad with radius 100 nm), models employing mass action law significantly
underestimate the peak Ca®" concentration during an LCC opening.

Since Ca®" ions induce RyR opening, a strong positive feedback is present
in CICR (essentially by definition). Positive feedback will amplify any fluc-
tuation in Ca?" signal, unless kept in check somehow. Mechanisms that keep
CICR stable' are known to operate during CICR: (1) Ca*"-inactivation of
RyRs; (2) Ca*"-inactivation of LCCs; (3) requirement that multiple Ca®*
ions bind to a RyR before it opens [111|. However, it has not been previ-
ously shown in a mathematical model that these mechanisms are sufficient
for a stable and reliable CICR in the presence of noise in the Ca®" signal due
to discreteness of Ca®" ions. The article 11T shows that mechanisms (1)-(3)
are sufficient to ensure stable CICR when only 20-50 free Ca*" ions mediate
CICR.

Entry of Ca*" ions through an open LCC triggers opening of RyRs lo-
cated on the SR membrane apposed to LCCs. Through a single open RyR,

'In addition, allosteric interactions between RyRs are known to be present, however,
these interactions are not considered in this thesis.
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approximately 4,000 Ca®" ions enter the dyad each millisecond [101]. Hence,
signal-to-noise ratio of Ca®" signal is significantly higher after one or more
RyRs open, and signaling noise influences mainly the initial phase of CICR.

In continuum approximation, a Ca** ion (more precisely, a non-zero Ca**
concentration) is always present near a binding site if average dyadic Ca*"
concentration is non-zero, which is not the case when Ca" ions are discrete.
Hence, signaling noise in Ca*" trigger likely influences EC coupling gain.
One way to investigate the impact of signaling noise is to scale both Ca*"
influx via LCCs and RyRs, and the diffusion coefficient by the same factor.
Since a higher (respectively, lower) Ca®" influx compensates for the reduc-
tion (increase) in dyadic Ca*" concentration due to a higher (lower) diffusion
coefficient, this method enables investigation of the noise level in Ca*" sig-
naling on CICR. In article ITI, it was shown (Fig. 12 in article IIT) that more
noisy Ca®* signaling (a lower Ca®" diffusion coefficient coupled together with
a lower Ca*" influx) in CICR reduced EC coupling gain. Similarly, less noisy
Ca*" signaling increased EC coupling gain.

The results of article IIT support the view that gating noise is the main
source of noise in CICR, however, Ca®" signaling noise due to the small
number of Ca®' ions does contribute by reducing EC coupling gain. In
summary, article 11T showed that CICR. is robust at the whole-cell level even
though only a few free Ca*" ions are responsible for triggering further Ca*"
release from RyRs in each dyad.

5.3 Gating noise and EADs

Repolarization of a cardiac myocyte is a precarious process. While many
different currents orchestrate repolarization, only a few channels of each type
are open at any given time |59|. Hence, small changes due to opening/closing
of a handful of individual channels may pervert repolarization.

A rather common type of repolarization abnormality is a spurious sec-
ondary depolarization of an AP known as an early after-depolarization (EAD).
EADs occur during phase 2 or phase 3 of an AP, however, these two occur-
rences may be due to different mechanisms [10]. Medical importance of EADs
stems from their association with polymorphic tachycardia [10], which is a
frequent precursor to sudden cardiac death in heart failure patients [72].

Experimental data suggest that signaling events such as CaMKII phos-
phorylation and (-AR stimulation induce EADs [23, 98]. Mazur et al. [60]
showed that blockers of CaMKII and PKA eliminate EADs as well as tor-
sades de points. Since repolarization of the AP depends on only a few open
ion channels, it is likely that gating noise influences repolarization [112, 104].
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During the plateau phase of the AP, membrane current is dominated by
inward Ca*" current and outward potassium currents in a delicate balance.
Cardiac LCCs have four distinct gating modes [37, 110 known as 0, Oa, 1
and 2. The typical open state in mode 1 has 0.5 ms duration, while the high-
activity gating mode 2 has a relatively long open time of 5 ms [110]. Silent
gating mode 0 and and low activity mode 0a do not contribute significantly
to Ca®™ current. Physiological role of mode 2 gating is likely to enhance
heart contraction under (3-AR stimulation, that is, under "fight-or-flight"
conditions. Certain signaling events that promote LCC phosphohorylation
also promote mode 2 gating of LCCs. In particular, PKA-mediated phos-
phorylation of LCC increases both the fraction of LCCs available for gating
as well as the ratio of LCCs gating in mode 2. Similarly, CaMKII phospho-
rylation increases the ratio of LCCs gating in mode 2. Motivated by this,
article I examined how gating noise due to LCCs influences action potential
duration and shape using a stochastic model of 3-AR stimulation in a cardiac
myocyte.

The basis for the model in article I was formulated by Greenstein et al.
[33], who extended the Greenstein-Winslow model [34] of the canine ventric-
ular myocyte to include the effects of G-AR stimulation by 1 pmol/L iso-
proterenol. 3-AR stimulation increases the availability of LCCs and thereby
the availability of the cardiac dyads from 12,500 in the baseline to 30,000
available dyads (out of the total 50,000 dyads present in a myocyte) [33].
In the model, 8-AR stimulation induced PKA-mediated phosphorylation of
LCCs, which shifts LCCs to high-activity gating mode 2. Finally, -AR
stimulation enhanced SERCA rate by factor 3.3, increased Ik, and reduced
inactivation of Ik,. Incorporation of these phosphorylation-dependent effects
in the model [34] yielded changes of action potential and Ca®' transients in
agreement with those measured experimentally [33].

The presence of LCCs gating in mode 2 increased the heterogenity of ion
channels responsible for L-type calcium current, which increased gating noise
level associated with this current. A higher gating noise level may influence
AP morphology, which was explored by an ionic model of the cardiac AP
in article I. Article I showed that an increased noise level in L-type calcium
current due to the presence of an increased ratio of LCCs gating in mode 2
may induce EADs. EADs occurred when an increased ratio of LCCs gated
in mode 2 due to two factors: (1) deterministic prolongation of APD due to
an increased Ca*" influx; and (2) increased gating noise level which gener-
ated noise-induced formation of EADs. In simulations, frequency of EADs
depended on the ratio of LCCs gating in mode 2, with a higher ratio of LCCs
gating in mode 2 inducing a higher frequency of EADs. The occurrence of
EADs was random, which was shown by the finding that changing random
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number seed in simulation during a late phase of the plateau before an EAD
formed was sufficient to remove the EAD or induce a second EAD.

The observation of stochastic formation of EADs is supported by the
fact that APD distribution in the model of Greenstein and Winslow [34] (on
which the S-AR model [33] is based) becomes skewed toward long intervals
at high gating noise levels (article IT), which predisposed a myocyte to EADs.
In addition, it is a well documented fact that noise in bistable systems in-
duces transitions absent in a corresponding deterministic system [55]. Since
a myocyte is known to be a bistable system in the sense that rather small
modifications of membrane currents may lead to secondary depolarizations
[113], the finding of EADs as a results of gating noise is consistent with
previous studies of noise in bistable systems (e.g., Lindner et al. [55]).

The finding of stochastic induction of EADs due to mode 2 gating of
LCCs may also be relevant for heart failure. It is known that AP shapes in
failing myocytes are more variable than in normal myocytes [71]|. In a failing
myocyte, fewer LCCs are available to gate but the total current density
through LCCs is unchanged [16|. This suggests that a higher ratio of LCCs
gate in mode 2 in heart failure than under normal conditions. If this indeed
is the case, increased gating noise level due to mode 2 gating of LCCs may
contribute to increased frequency of EADs in failing myocytes.
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Chapter 6

Discussion

In articles [-1V included in this thesis, mathematical models were constructed
to investigate cardiac myocytes, Ca*" dynamics in the cardiac dyad, and how
noise due to various sources modulate properties of a myocyte. The main
results of the thesis are discussed in the following sections.

6.1 The impact of noise on a cardiac myocyte

Suppression of noise in cellular processes is energetically expensive. Hence,
it is likely that each organism operates at a maximal noise level consistent
with its survival |1]. This suggests that under normal conditions, operation
of an organism is robust against noise. Under abnormal conditions this may
not be the case: for example, it is known that under heart failure conditions,
variability of AP shape increases significantly [71]|, which suggests that ran-
dom signals (e.g., gating noise) influence functioning of a myocyte more than
under normal conditions. While this AP variability is not only due to noise
sources examined in this thesis, it is consistent with the results of this thesis
suggesting that noise may have a significant impact on the function of the
heart, in particular under pathological or exceptional conditions.

Article T showed that noise due to mode 2 gating of LCCs may under
B-AR stimulation induce EADs. Article IT proved that a higher noise level
in a diffusion process model induces prolongation of average APD as well
as a higher probability of hitting a higher voltage, that is, of inducing an
EAD. These results are consistent with the general observation that excitable
bistable systems exhibit noise-induced transitions [55].

Gating noise due to ion channels induces beat-to-beat variability to APD.
In Zaniboni et al. [112], it was found that APD is approximately normally
distributed. However, even a rather simple model based on stopping time of
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a diffusion process (article IT) suggests that the distribution of APDs should
be skewed toward long durations. Similarly, in the biophysically detailed
model of cardiac AP of Greenstein and Winslow [34], the APD distribution
is skewed toward long durations (article IT). These results suggest that APDs
in cardiac myocytes are not necessarily normally distributed, and that the
distribution of APDs is likely skewed to some degree. If this is not the case,
a mechanism reducing the skewness of the APD distribution must be present
in a myocyte.

6.2 Impact of noise in CICR on EC coupling
gain

A significant signaling noise is present in CICR due to the small number of
Ca”" ions and gating noise. How does robust EC coupling arise from noisy
CICR, as was observed in article ITI? Firstly, approximately 12,500 cardiac
dyads are present in a single myocyte, and the global Ca*" release at the
myocyte level is an integrated function of all dyadic Ca®" release events.
Secondly, as was shown in article III, the shape of RyR protein structures
enables RyRs to robustly detect Ca®" trigger, which increases EC coupling
gain and attenuates the impact of noise on CICR. Thirdly, CICR couples
negative feedback via Ca*" inactivation attenuating noise together with pos-
itive feedback in CICR amplifying noise [55]. While additional mechanisms
are likely present in a cardiac myocyte, these three mechanisms are sufficient
for stable CICR at the cell level. The presence of a significant noise level sets
constraints on possible mechanisms of CICR, e.g., the absence of negative
feedback would disable CICR and break EC coupling since any fluctuation
would result in an unstoppable Ca*" release.

Bhalla [11] argued that at volumes below 1 femtoliter (107! 1), the com-
monly used mass action law becomes unreliable for modeling signaling net-
works. Volume of the cardiac dyad is 1072 femtoliters, which suggests that
at a single dyad level, mass action law and the traditional concentration
approach do not work. Even the compound volume of all available cardiac
dyads present in a myocyte is only approximately 10 femtoliters, which is
close to the 1 femtoliter threshold of Bhalla [11]. Nevertheless, according to
the results of article I1I, CICR has a significant noise component at the level
of a single dyad, but whole-cell EC coupling is robust and EC coupling gain
is less influenced by stochasticity at the whole-cell level.

CICR is not only observed in the cardiac muscle, but has been described
in skeletal muscle [27], smooth muscle [36], parasympathetic neurons [7],
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adrenocortical cells [109], and auditory and vestibular hair cells [53, 84].
Given the ubiquity of CICR, these results are of importance in many bi-
ologically important systems. EC coupling in skeletal and smooth muscle
myocytes occurs in a different way from EC coupling in a cardiac muscle.
In skeletal muscle LCCs couple mechanically to RyRs, while in cardiac my-
ocytes no such mechanical coupling is known to occur. Hence, while CICR
occurs in skeletal muscle it can be expected that Ca*" signaling noise due
to small number of second messenger Ca®" ions is less important in skeletal
muscle than in cardiac muscle. In smooth muscle cells, EC coupling occurs
via RyR-driven CICR and IP3-dependent receptors [10], which suggests that
the results of this thesis also apply to smooth muscle cells.

6.3 Protein structures in the dyad

Biophysically detailed computational models of a ventricular myocyte should
be based on experimental measurements and on anatomical data on real cel-
lular geometry, whenever possible. Taking anatomical data into considera-
tion is particularly important in modeling compartments in which significant
protein structures compared to the volume are present, as is the case in the
cardiac dyad. Computational models that take these issues into account are
predictive and represent much more than just a summary of experimental
data [|45]. Computational models enable investigation of issues which are
difficult to examine in experimental studies, e.g., the impact of the relative
position of LCC to RyRs on EC coupling gain and how geometry of RyR
protein structures influences CICR.

The results of articles 11T and TV suggest that protein structures may
have a significant impact on CICR via two different mechanisms. Firstly,
large RyR feet structures increase the probability that a Ca®' ions binds to
an activating binding site. Secondly, protein structures reduce the impact of
Ca*" signaling noise on CICR, which improves the reliability of CICR. These
mechanisms enable a smaller Ca*" signal to trigger CICR than is possible
in the absence of RyR protein structures. The smallness of Ca®" trigger
reduces the energy consumption of a myocyte because any extra Ca*" must
be extruded from the myocyte, which is energetically more expensive than
Ca*" storage in the Sarcoplasmic Reticulum.

Another important aspect of protein structures is the exact placement of
LCCs apposed to RyRs in the dyad. In article III, it was found that both
the location of RyRs in the dyad and the location of Ca*" binding sites on
RyR surface influence EC coupling gain (Fig. 7 in article I1T). This suggests
that the relative position of LCCs and RyRs may have a significant impact
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on CICR. Interestingly, it has been argued that position of LCCs relative to
RyRs is almost random [87]. Hence, noise due to the placement of LCCs
relative to RyRs may influence EC coupling gain. It provides an attractive
target for future investigations. In addition to noise sources analyzed in this
thesis, local voltage noise due to, e.g., movement of gating charges is present
in the dyad.

An issue related to protein structures in the cardiac dyad is the impact
of mobile Ca** buffers facilitating Ca®" diffusion out of the dyad. Immobile
Ca*" buffers do not influence steady-state Ca*" concentration in the dyad,
they only modulate the rate of approach to the steady-state Ca®" concentra-
tion. In contrast, mobile Ca®" buffers do influence the dyadic steady-state
Ca?* concentration, since mobile buffers are replenished from the myoplasm.
The main mobile buffers found in the cardiac dyad are CaM and ATP [10].
In CICR, mobile Ca*" buffers can facilitate Ca®" diffusion from the dyad
to myoplasm and thereby they reduce the already low number of free Ca®"
ions in the Ca®" trigger. Given that the most likely concentration of mobile
Ca’®" buffers is low, it is unlikely that mobile Ca*" buffers would have a
major impact on CICR. Mobile Ca*" buffers were not investigated in article
ITI, since it is not well known how many mobile buffers are present in the
dyad and since the impact of mobile Ca®" buffers is likely relatively small to
Ca®" buffering. Nevertheless, certain "mobile Ca®*-buffers" (e.g., CaM and
CaMKII) actually modulate function of LCCs and RyRs in the cardiac dyad,
and they should be included in future models of Ca*" dynamics in the dyad.

6.4 Multiscale approach

CICR is an important example of a general theme in biology - signaling within
subcellular microdomains mediated by small numbers of molecules [10]. Sig-
naling events associated with CICR have a profound influence on the cardiac
electro-mechanical function at the level of cell and tissue, thus necessitating
multiscale modeling approaches. In the multiscale approach, the aim is to
link microscopic details (e.g., location of binding sites on a RyR molecule)
to macroscopic details (e.g., properties of EC coupling gain). An integrative
biophysically detailed cell model provides a prime example of the multiscale
approach: each ion channel is a molecular machine operating in nanometer
scale, while length of a mammalian cardiac myocyte is approximately 100
pm [57].

Human body consists of approximatively 1—10x 103 cells [25]. The heart
consists of 1—10x 10% connective tissue cells and 2—8 x 10° heart muscle cells
[2, 70]. Computational single-cell models can be coupled together to build a
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tissue-level model, which can be used to provide quantitative understanding
of whole-organ behavior in terms of sub-cellular function [107, 66, 45]. A
model of an entire heart consisting of biophysically detailed models therefore
spans length scales from the nm scale to the cm scale, that is, 8 magnitudes.
A whole-heart model should represent a large subset of the approximatively
10'9 individual cells present in the heart.

In integrative whole-heart modeling, there is always a trade-off between
detail and computational tractability which necessitates constant develop-
ment of cell models. An integrative whole-heart model cannot directly incor-
porate a model tracking individual Ca®" ions in the dyad, and a simplified
model of CICR must be used. Assuming that a whole-heart model is built
from 107 individual 25-variable cell models each simulated in 0.1 seconds real
time, 1 second of simulation of the whole-heart model using a 100-processor
computer takes roughly 3 hours real time. Hence, such a system can run
only a single 8 second simulation in a day. This demonstrates how crucial
it is in computational whole-heart studies that each cell is represented by a
computationally-efficient model.

The four articles included in this thesis describe CICR at four levels of
detail in the cardiac dyad. The most detailed model (article TIT) describes
realistic diffusion of Ca®" ions in the cardiac dyad in the presence of electro-
static potentials and dyadic protein structures using the discretized Fokker-
Planck approximation. The next level of detail is provided by article IV, in
which Ca*" concentration profile is in equilibrium in the cardiac dyad. This
in turn can be approximated by a constant Ca®" concentration in the cardiac
dyad (article T). The most drastic simplification is the complete omission the
cardiac dyad in a model, as was done in article II. Hence, the models of ar-
ticles I-IV can be organized into a multiscale hierarchy describing CICR at
four levels of detail.

6.5 Conclusions

The heart is a remarkably well-tuned system, which rapidly adapts in re-
sponse to a wide variety of physiological stimuli. The applications of mathe-
matical methods presented in this thesis are novel, and they were formulated
to enable a more thorough understanding of the heart, CICR and cardiac
myocytes, and to better understand their robustness. The results of this
thesis show that noise modulates the functioning of a cardiac myocyte: (1)
gating noise due to L-type Ca®" channels gating in mode 2 may induce early
after-depolarizations which trigger arrhythmias, (2) voltage noise mostly due
to ion channel gating noise may increase average action potential duration,
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not only variance of action potential duration, and skew distribution of ac-
tion potential durations toward long durations, and (3) Ca®" signaling noise
due to the small number of free Ca®' ions mediating CICR likely slightly
reduces Excitation-Contraction coupling gain. Despite the fact that a sig-
nificant Ca®" signaling noise in present in CICR, it was found that at the
whole-cell level Excitation-Contraction coupling is robust, partly due to the
shape of RyR protein structures found in the cardiac dyad.
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Appendix A

Local equilibrium approximation

Wang et al. [99] derived a local equilibrium approximation for the Fokker-
Planck equation, in which electrodiffusion in a cavity is coarse-grained to
random movement on a lattice. The method of Wang et al. [99] was gener-
alized by Xing et al. [108], whose approach is followed in this Appendix.
Wang et al. [99] considered the one-dimensional Fokker-Planck equation

Op(t, x)

Op(t,z) _ 0 [, ¢'(x) |
ox

ot ox| kT’

(t,z)+ D

p(0,z) = F(x), (A1)

defined on [a,b] C R. In equation (A.1), p : [a,b] — R is the probability
density of, e.g., Ca®" ions, D € R is the diffusion coefficient, ¢ : R — R
describes the potential energy, and F' : R — R gives the initial probability
density of ions on interval [a,b]. Boundaries at {a,b} are either absorbing
or reflecting. The aim is to discretize equation (A.1) to a discrete-state
continuous-time Markov process.

The main idea of Wang et al. [99] was to use a finite-difference scheme
that allows interpretation as a Markov process. First p is discretized to
pa(t) = ["7 p(t,y)dy on a lattice defined by the set {(z,,zns1)}0_, of
intervals with constant spacing Ax = (b—a)/N, where 1 = a, z, = a+(n—
1)Az, and xy,1 = b. Variables p, : R — R evolve according to a mean-field
equation

dp,(t)
dt

- an-l—lpn-I—l(t) + ﬂn—lpn—l(t) - (an + ﬂn)pn(t) - Jn - Jn—17 (AQ)

where J,, is the net probability flux between lattice points x,, and x,,,1 defined
by

Jn = On41Pn+1 — ﬁnpn (AB)
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In local equilibrium on (a, §) C [a, b], the equation (A.1) reduces to

0= 25400+ 5] »

for all z € (a, 5). The general solution to equation (A.4) is

Peq(T) = e~ 0@)/ksT (Cl/ e®)/ kT g6 4 Kl), (A.5)

a

where (1, K; € R are integration constants. To derive local equilibrium
jump rates, assume that p is in equilibrium on interval (x,_1,z,41). Then
jump rates between intervals I, 1 = (z,_1,x,) and I, = (x,,2z,+1) can be
computed from flux J(y) = —D[%p(zﬁ, y) + %’;y)] at the boundary y = z,,
between intervals [,y and I,,. Since p, (2,) = C1 — ¢'(2,)p(zn)/kpT, flux
J is in equilibrium given by J(z,) = —DC}.

Since solution (A.5) has two integration constants, two constraints are
needed to fix the constants. The constraints are given by equations

Tn41
Post = / pea(9)y, (A.6)

Pn = / peq(y)d:% (A7)

where it is assumed that p, and p,.; are known. Solving for the integration
constants, we obtain

An n An n
Cy = +1P Prt1 ’ (A.8)
An+an - Aan-i-l
Bnpn+1 - BnJrlpn
An+1Bn - AAanJrl7

K, =

(A.9)

— ["F e=0W)/kT — "k [Y o= (6y)—¢(2))/kBT
where A; = kaq e~ PWIkBL dy and By = kaq fa e\ Bl dz dy, where
ke {n,n+1}.
Rates a,41 and (3, can be identified from flux J(z,) and from equation
(A.3), and they are given by

DA,
ByApi1 — Bo Ay’
_ DAn+1
" BpApi1 — BniiAy

Opt1 =

(A.10)

b (A.11)

Equations (A.10) and (A.11) define the rates for a general non-linear potential
¢, as in Xing et al. [108]. The rates satisfy the detailed-balance constraint,
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as is shown in the following. When free energy G, of interval (x,_1,z,) is
given by

G, = kBTln</;n1 exp(_ki(;{))dy) (A.12)

rates o, .1, 3, satisfy the detailed balance equation [108|

Q41 o An
ﬁn An+1

Hence, the process is in detailed balance by construction, which ensures that
no energetically free cycles are present.

In article ITI, it was assumed that potential ¢ is linear, that is, ¢(x) = sx.
Under these conditions, rates a,, 41 and 3, are given by

). (A.13)

D g
= A.14
_ D g
B oo T (A.15)

where g = sAxz/kgT. In the absence of electric potential, that is ¢(x) = 0,
equations (A.10) and (A.11) reduce to a,41 = & and 3, = ﬁ, that is,
to pure diffusion.

Finally, we must investigate boundaries of the dyad. The assumption
that the boundary at a is reflecting (that is, p'(x) = 0 on the boundary) does
not change rates (A.14) and (A.15). However, when the boundary at a is
absorbing (that is, p(x) = 0 on the boundary), the absorption rate is for the
linear potential ¢(z) = sz given by o = ﬁﬁ [99]. This rate can be
derived from equation (A.6). Boundary at b is treated in a similar way.

The method described above yields a Markov process approximating elec-
trodiffusion. The method can be used both in a stochastic simulation and in a
mean-field approach. While the above derivation was done in one dimension,
the results can directly be generalized to a higher dimensional space.
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